
Role of Formal Verification in
Certifying Autonomous

Vehicles

Parasara Sridhar Duggirala

CSE@UCONN

psd@uconn.edu

Some Recent Developments

Google self driving car so-far
had 13 accidents (none fatal).

Some Recent Developments

Google self driving car so-far
had 13 accidents (none fatal).

Some Recent Developments

Google self driving car so-far
had 13 accidents (none fatal).

5

Doomsday
in 10 Years!

6

Doomsday
in 10 Years!

7

With great software, comes great risks!

Avoiding The Doomsday

8

Certified Autonomous Vehicle

This Talk: How Formal Verification Can
Help in Certifying Autonomous Vehicles.

9

Certified Autonomous Vehicle

Outline

✓Avoiding Doomsday For Autonomous Vehicles

• Formal Verification 101

• Success Stories of Formal Verification

• Roadmap for Certification of Autonomous Vehicles

• Conclusions

Formal Verification 101

• Model Checking: Algorithmically verifying if your
given model satisfies a given property.

Model Checking
Tool

Model
Software

Property
(There are no buffer

overflow possibilities)

Certificate

Counterexample

Used extensively in

hardware, software,

and protocol verification

Model Checking ≠ Extensive Testing

• Model Checking considers all possible executions
and will either return a proof or counterexample.

Model Checking
Tool

Model
Software

Property
(There are no buffer

overflow possibilities)

Certificate

Counterexample

Used extensively in

hardware, software,

and protocol verification

Verification of Autonomous Vehicle

Certification
Software

Model
Of AV

Property
(Doesn’t “violate” traffic laws)

Certificate

Counterexample

Why Software For Certification?

Ex. Aerospace domain: Certification for avionic
systems is done manually.

Why Software For Certification?

Ex. Aerospace domain: Certification for avionic
systems is done manually.

Consequence: Modifying a single line of code would
require certification of the entire system.

Why Software For Certification?

Ex. Aerospace domain: Certification for avionic
systems is done manually.

Consequence: Modifying a single line of code would
require certification of the entire system.

Avionics ≠ Automotive – widely different markets.

Why Software For Certification?

Ex. Aerospace domain: Certification for avionic
systems is done manually.

Consequence: Modifying a single line of code would
require certification of the entire system.

Avionics ≠ Automotive – widely different markets.

As the complexity of the system increases,
manual certification cost increases exponentially.
Automating the certification process using Formal

Verification is our only hope.

Success Stories of
Formal Verification

Disaster Scenarios
Bad software caused some serious damage!

Intel Pentium bug
caused loss of
reputation
and money.

Ariane 5 crashed
within a few
minutes after
launch

Software race condition caused
northeast blackout of 2003

Software bug
caused Toyota to
recall 1.2M
Prius cars

Avoiding Doomsday

Intel now uses
Synopsys/Cadence
tools for formal
verification.

Static analysis
could catch the
bug during the
analysis

NASA review of
Toyota’s code
mentions using
Formal verification
tools.

AbsInt: A Tool For Software Verification
Of Flight Control Software.

The flight control software in some AIRBUS systems have been fully
verified to not have any buffer overflow or division by zero errors.

SLAM: Static Verifier for Windows Drivers

Used for verifying device drivers for Windows.

Low rate of false positives – around 4%.

IEEE Property Specification Language

• Combined industry + academia effort for
standardizing the specification language for
hardware.

• Part of Verilog, VHDL, SystemC, and
SystemVerilog.

• Intel, IBM, Freescale, Synopsis, Cadence, etc.

SeL4: A Formally Verified Microkernel
Uses mechanical proof checker Isabelle/HOL

Properties of microkernel are encoded as theorems and
proved in Isabelle/HOL

SeL4 has been deployed on Unmanned Little-Bird helicopter.

RED Team hackers couldn’t hack it even after 6 months

while having access to source code!

Proving >> Development

Code = 10K lines

Proof > 120K lines

How To Certify Autonomous Vehicles:

A Formal Verification Approach
And Research Directions

Levels of Abstraction

1. High level traffic rules
“Always stop at a red light”

2. Motion primitives
Controllers for turning car
and avoiding collisions.

3. Real time correctness
A command issued will run with

a maximum latency of 20ms

High Level Traffic Rules

• For the humans, by the humans.

Official driver’s manual provided by
State of Connecticut Department of Motor Vehicles.

60 page document describing the rules of the road.

High Level Traffic Rules

• For the humans, by the humans.

Official driver’s manual provided by
State of Connecticut Department of Motor Vehicles.

60 page document describing the rules of the road.

How does a computer understand
these rules?

Traffic Rules For A Computer?

• Computer can understand formulas and logic.

Traffic Rules For A Computer?

• Computer can understand formulas and logic.

• Solution: encode traffic rules as logic formulae.

• Is it even possible? Evidence suggests, yes.

Traffic Rules For A Computer?

• Computer can understand formulas and logic.

• Solution: encode traffic rules as logic formulae.

• Is it even possible? Evidence suggests, yes.

• Example PSL specification for hardware circuits:
“an acknowledgement is issued within 4 cycles of receiving a request”

always(req -> {[*4]; ack;})

• Example from Connecticut DMV manual:
“merging with any traffic should take at most 2 seconds”

always(mergeBegin -> {[*2]; mergeEnd;})

Linear Temporal Logic – A Logic For
Describing Temporal Properties

• Linear Temporal Logic (LTL): A logical framework for
expressing temporal specification of behaviors.

always(req -> {[*4]; ack;})

• Variants of temporal logic (timed logics) for specifying real-
time behaviors.

Research Direction
NextGen Traffic Manual: List of formulae in suitable temporal logic.

Motion Primitives

Motion Primitives

• Behavior of car can be modeled in a “bicycle model”

Motion Primitives

• Behavior of car can be modeled in a “bicycle model”

• Given the model ሶ𝑥 = 𝑓(𝑥, 𝑢), are the controllers for
turning, passing, and breaking, safe?

ሶ𝒙 = 𝒇(𝒙, 𝒖)

Verification of Motion Primitives.

• Hybrid Systems Verification (Computer Science +
Control)

slow down

turn
speed up

turn

CSE5905 HW Prob.: Generate parameters for autonomous car [simpler model]
Controller and verify using C2E2 (my tool) if the safety specifications are satisfied

Research Direction
Scalable Verification Tools For Handling Complex ODE Model

Real-Time Behavior

• In theory, the hardware just runs one process, in
practice, the hardware juggles various processes.

• Example: the mars rover had 50 processes while
landing!

• Each of these processes are handled by scheduler.

Scheduling

How To Guarantee Real-Time Behavior?

• Real-Time Systems in Computer Science.

• Worst Case Execution Time (WCET) Problem:
Given a program P and a hardware platform H
what is the worst case running time of P on H ?

• Very mature software tools for analyzing WCET.

Formal Verification For Certified
Autonomous Vehicles
1. High level traffic rules

“Always stop at a red light”

2. Motion primitives
Controllers for turning car
and avoiding collisions.

3. Real time correctness
A command issued will run with

a maximum latency of 20ms

Prototype – Lab Version

Miniature version of autonomous vehicle

Thank You. Questions?

